If we randomly put $n(\geq 1)$ balls into $m(\geq 1)$ boxes, what's the expectation of the number of empty boxes?

Let random variable $A_{m}(n)$ be the number of empty boxes, then conditioning on $A_{m}(n-1)$ we have

Table 1: Distribution of $A_{m}(n) \mid A_{m}(n-1)$ when $n \geq 2$

$A_{m}(n) \mid A_{m}(n-1)$	$A_{m}(n-1)-1$	$A_{m}(n-1)$
P	$\frac{A_{m}(n-1)}{m}$	$1-\frac{A_{m}(n-1)}{m}$

Let $a_{m}(n)=E\left(A_{m}(n)\right)$ then we have

$$
a_{m}(n)=E\left(A_{m}(n)\right)=E\left(E\left(A_{m}(n) \mid A_{m}(n-1)\right)\right)=\frac{m-1}{m} a_{m}(n-1), \forall n \geq 2
$$

Solving this equation using method of iteration, we have

$$
a_{m}(n)=(m-1)\left(\frac{m-1}{m}\right)^{n-1}=m\left(\frac{m-1}{m}\right)^{n}, \forall m \geq 1, n \geq 1
$$

From the above formula we know that
(i) the expected number of empty boxes decays geometrically
(ii) as m becomes larger, the geometrical decay becomes slower
(iii) the decay of empty boxes is very slow for moderate or large m, since $\frac{m-1}{m}$ is close to 1

Notice that $\forall c>0, a_{m}(c m) \rightarrow m e^{-c}$ as $m \rightarrow \infty$, i.e. the expect percent of empty boxes if we put $c m$ balls into m boxes is approximately e^{-c} when m is large.

In statistics, usually we're interested in the first two moments of random variables. We can also find $E\left(A_{m}^{2}(n)\right.$ using a similar method. Let $b_{m}(n)=$ $E\left(A_{m}^{2}(n)\right)$, then

$$
b_{m}(n)=E\left(A_{m}^{2}(n)\right)=E\left(E\left(A_{m}^{2}(n) \mid A_{m}(n)\right)\right)=\frac{m-2}{m} b_{m}(n-1)+\left(\frac{m-1}{m}\right)^{n-1}, \forall n \geq 2
$$

Solving this equation using method of iteration, we have

$$
b_{m}(n)=\left(m^{2}-m\right)\left(\frac{m-2}{m}\right)^{n}+m\left(\frac{m-1}{m}\right)^{n}
$$

So the variance of the $A_{m}(n)$ is
$\operatorname{Var}\left(A_{m}(n)\right)=b_{m}(n)-a_{m}^{2}(n)=\left(m^{2}-m\right)\left(\frac{m-2}{m}\right)^{n}+m\left(\frac{m-1}{m}\right)^{n}-m^{2}\left(\frac{m-1}{m}\right)^{2 n}$.

Intuitively the variance of $A_{m}(n)$ increase first as n increase and then decrease as n increase. The plot of $\operatorname{Var}\left(A_{m}(n)\right)$ against n when $m=100$ is in Figure 1, which consists with our intuition. From Figure 1 we can see that the variance of the number of empty boxes when $m=100$ is around 10 (yields a standard deviation around 3) in the worst case, so we can predict the number of empty boxes reasonably well. Figure 2 presents the $2-\sigma$ interval for the number of empty boxes when $m=100$.

Using a similar way, we can calculate any finite moment of $A_{m}(n)$. However, usually we're not interested in moments that higher than 2.

Figure 1: Variance of Number of Empty Boxes when $m=100$

Figure 2: $2-\sigma$ Intervals for Number of Empty Boxes when $m=100$

