The Power of Generating Functions

Chuanlong Benjamin Du

May 15, 2010

Once my officemate Tieming asked me about a problem that she met in her research. Suppose B is a symmetric matrix of huge dimension and D is a diagonal matrix with nonnegative diagonal elements. We already know the inverse of B, how can we calculate the inverse of B + D? I thought for a while and found a good way to solve the problem.

First I recalled the following results (easy to check): if B is a $k \times k$ non-singular matrix and B + cc' is non-singular, then

$$(B + cc')^{-1} = B^{-1} - \frac{B^{-1}cc'B^{-1}}{1 + c'B^{-1}c}.$$

If the diagonal matrix D can be written as cc' for some vector c, then we know how to calculate the inverse. But unfortunately usually a diagonal matrix D cannot be written as cc'. However, suppose $D = diag(d_1, \ldots, d_n) = \sum_{i=1}^{n} diag(d_i e_i)$, where e_i is a vector of length n with all elements 0 except the the i^{th} element. It's obvious that $diag(d_i e_i) \equiv D_i$ is a diagonal matrix whose i^{th} diagonal element is d_i and all other elements are 0. D_i can be written as $c_ic'_i$ for some c_i , so $B + D = B + \sum_{i=1}^{n} D_i = B + \sum_{i=1}^{n-1} D_i + D_n$. Thus we can easily calculate the inverse of B + Dif we know the inverse of $B + \sum_{i=1}^{n-1} D_i$. We can easily calculate the inverse of $B + \sum_{i=1}^{n-1} D_i$ if we know the inverse of $B + \sum_{i=1}^{n-2} D_i$, so on and so forth. This indicates that we can calculate the inverse of B + D iteratively.

I haven't implemented this algorithm yet, but a roughly estimate of the complexity of this algorithm tells me that even R can handle it. I'll write a R function to do this later when I'm free.