The Power of Generating Functions

Chuanlong Benjamin Du

May 15, 2010

Once my officemate Tieming asked me about a problem that she met in her research. Suppose \boldsymbol{B} is a symmetric matrix of huge dimension and \boldsymbol{D} is a diagonal matrix with nonnegative diagonal elements. We already know the inverse of \boldsymbol{B}, how can we calculate the inverse of $\boldsymbol{B}+\boldsymbol{D}$? I thought for a while and found a good way to solve the problem.

First I recalled the following results (easy to check): if \boldsymbol{B} is a $k \times k$ non-singular matrix and $\boldsymbol{B}+\boldsymbol{c} \boldsymbol{c}^{\prime}$ is non-singular, then

$$
\left(\boldsymbol{B}+\boldsymbol{c} \boldsymbol{c}^{\prime}\right)^{-1}=\boldsymbol{B}^{-1}-\frac{\boldsymbol{B}^{-1} \boldsymbol{c} \boldsymbol{c}^{\prime} \boldsymbol{B}^{-1}}{1+\boldsymbol{c}^{\prime} \boldsymbol{B}^{-1} \boldsymbol{c}} .
$$

If the diagonal matrix \boldsymbol{D} can be written as $\boldsymbol{c c ^ { \prime }}$ for some vector \boldsymbol{c}, then we know how to calculate the inverse. But unfortunately usually a diagonal matrix \boldsymbol{D} cannot be written as $\boldsymbol{c c ^ { \prime }}$. However, suppose $\boldsymbol{D}=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)=$ $\sum_{i=1}^{n} \operatorname{diag}\left(d_{i} \boldsymbol{e}_{i}\right)$, where \boldsymbol{e}_{i} is a vector of length n with all elements 0 except the the $i^{\text {th }}$ element. It's obvious that $\operatorname{diag}\left(d_{i} \boldsymbol{e}_{i}\right) \equiv \boldsymbol{D}_{i}$ is a diagonal matrix whose $i^{\text {th }}$ diagonal element is d_{i} and all other elements are $0 . \boldsymbol{D}_{i}$ can be written as $\boldsymbol{c}_{i} \boldsymbol{c}_{i}^{\prime}$ for some \boldsymbol{c}_{i}, so $\boldsymbol{B}+\boldsymbol{D}=\boldsymbol{B}+\sum_{i=1}^{n} D_{i}=\boldsymbol{B}+\sum_{i=1}^{n-1} D_{i}+D_{n}$. Thus we can easily calculate the inverse of $\boldsymbol{B}+\boldsymbol{D}$ if we know the inverse of $\boldsymbol{B}+\sum_{i=1}^{n-1} D_{i}$. We can easily calculate the inverse of $\boldsymbol{B}+\sum_{i=1}^{n-1} D_{i}$ if we know the inverse of $\boldsymbol{B}+\sum_{i=1}^{n-2} D_{i}$, so on and so forth. This indicates that we can calculate the inverse of $\boldsymbol{B}+\boldsymbol{D}$ iteratively.
I haven't implemented this algorithm yet, but a roughly estimate of the complexity of this algorithm tells me that even R can handle it. I'll write a R function to do this later when I'm free.

