Suppose there're n distinct numbers x_{1}, \ldots, x_{n}, and y_{1}, \ldots, y_{n} is a random permutations of them. If $\exists k$ such that $y_{k}<y_{i}, \forall 1 \leq i<k$, then we say that y_{k} is a record (we always count y_{1} as a record). What's the expected number of records in y_{1}, \ldots, y_{n} ?

Let random variable A_{n} be the number of records in y_{1}, \ldots, y_{n} then

$$
A_{n+1}=A_{n}+X_{n}
$$

where A_{n} and X_{n} are independent and $X \sim \operatorname{Bernulli}\left(\frac{1}{n+1}\right)$. Let $a_{n}=E\left(A_{n}\right)$ then we have

$$
a_{n+1}=E\left(A_{n+1}\right)=E\left(A_{n}+X_{n}\right)=a_{n}+\frac{1}{n+1}
$$

Solving this equation iteratively, we have

$$
a_{n}=\sum_{i=1}^{n} \frac{1}{i} \approx \log n+\gamma
$$

where $\gamma \approx 0.58$ is the Euler constant, i.e. the expected number of records in n competitions (assume the score of competition has a continuous distribution) is approximately $\log n$, which increases very slow as n increases and the speed of increasement also becomes smaller and smaller. This tell us that: first, records are very rare; second, it's becoming harder and harder to break a record. Note that conditioning on the position of $y_{(1)}$ we can also solve this problem, but is much harder. This again illustrates that conditioning on an appropriate random variable is important.

Using a similar way, we can find the second moment of A_{n} which is

$$
E\left(A_{n}^{2}\right)=a_{n}+2 \sum_{i=1}^{n} \frac{a_{i-1}}{i}
$$

so the variance of A_{n} is

$$
\operatorname{Var}\left(A_{n}\right)=E\left(A_{n}^{2}\right)-a_{n}^{2}=2 \sum_{i=1}^{n} \frac{a_{i-1}}{i}+a_{n}-a_{n}^{2}
$$

The variance of the number of records is shown in Figure ??. From Figure ?? we can see that the variance increases pretty slow as n increases. Even when $n=1000$, the variance is smaller than 6 . So we can predict the number records pretty well when n is not too big. The 2- σ intervals for the number of records is presented in Figure ??.

Figure 1: Variance of Number of Records

Figure 2: 2- σ Intervals for Number of Records

